Programming Fundamentals: (40 Hrs.)
Python Programming
• Python basics (variables, data types, operators)
• Control structures (if/else, loops)
• Functions and lambda functions
• Object-Oriented Programming (OOP)
o Classes and objects
o Inheritance and polymorphism
o Encapsulation and abstraction
• Error handling and exceptions
• File I/O operations
• Regular expressions
• Modules and packages
• Virtual environments
• Python best practices
Essential Python Libraries
• NumPy (numerical computing)
• Pandas (data manipulation)
• Matplotlib (visualization)
• Seaborn (statistical visualization)
• SciPy (scientific computing)
Mathematics for Data Science: (16 Hrs.)
Linear Algebra
• Vectors and matrices
• Matrix operations
• Eigenvalues and eigenvectors
• SVD and matrix decomposition
• Linear transformations
• Applications in ML
Calculus
• Derivatives and partial derivatives
• Chain rule
• Gradient and Hessian
• Optimization (gradient descent)
• Integrals
• Multivariable calculus
Statistics & Probability
• Descriptive statistics
• Probability theory
• Probability distributions
• Hypothesis testing
• Confidence intervals
• Correlation and regression
• Bayesian statistics
• A/B testing
Web Scraping
• BeautifulSoup
• Selenium (dynamic content)
Statistical Analysis
• Univariate analysis
• Bivariate analysis
• Multivariate analysis
• Distribution analysis
• Correlation analysis
• Statistical tests
Data Preprocessing: (16 Hrs.)
Data Wrangling
• Handling missing data
• Data type conversions
• Removing duplicates
• Outlier detection and treatment
• Data normalization and standardization
• Feature scaling
• Encoding categorical variables
o One-hot encoding
o Label encoding
o Target encoding
• Handling imbalanced data
• Text preprocessing
• Date/time manipulation
Feature Engineering
• Creating new features
• Feature extraction
• Feature selection methods
o Filter methods
o Wrapper methods
• Polynomial features
• Interaction features
• Binning and discretization
Data Visualization
• Matplotlib advanced
• Seaborn advanced
• Plotly (interactive visualizations)
• Bokeh
• Chart types and when to use them
• Dashboard creation
• Storytelling with data
Data Collection & Management: (16 Hrs.)
SQL & Databases
• SQL fundamentals
• Joins and subqueries
• Aggregations and window functions
• Database design
• Normalization
• Indexes and optimization
• Data pipelines
• Data warehousing concepts
Machine Learning: (20 Hrs.)
Supervised Learning
Regression
• Linear regression
• Polynomial regression
• Ridge regression (L2)
• Lasso regression (L1)
• Elastic Net
• Decision tree regression
• Random forest regression
• Gradient boosting regression
• XGBoost, LightGBM, CatBoost
• Support Vector Regression (SVR)
Classification
• Logistic regression
• K-Nearest Neighbors (KNN)
• Naive Bayes
• Decision trees
• Random forests
• Support Vector Machines (SVM)
• Gradient boosting classifiers
• XGBoost, LightGBM, CatBoost
• Neural networks for classification
• Ensemble methods
o Bagging
o Boosting
o Stacking
Unsupervised Learning
Clustering
• K-Means
• Hierarchical clustering
• DBSCAN
Dimensionality Reduction
• Principal Component Analysis (PCA)
• Linear Discriminant Analysis (LDA)
Model Evaluation & Selection
• Train-test split
• Cross-validation (k-fold, stratified)
• Evaluation metrics:
o Regression: MSE, RMSE, MAE, R², Adjusted R²
o Classification: Accuracy, Precision, Recall, F1-score, ROC-AUC, Confusion Matrix
• Bias-variance tradeoff
• Overfitting and underfitting
• Regularization techniques
• Hyperparameter tuning
o Grid search
o Random search
o Bayesian optimization
• Feature importance
• Model interpretation (SHAP, LIME)
Deep Learning: (20 Hrs.)
Neural Networks Fundamentals
• Perceptrons
• Activation functions
• Feedforward networks
• Backpropagation
• Loss functions
• Optimizers (SGD, Adam, RMSprop)
• Batch normalization
• Dropout and regularization
Deep Learning Frameworks
• TensorFlow
• Keras
• PyTorch
• Model building and training
• Callbacks and checkpoints
Convolutional Neural Networks (CNNs)
• Convolution layers
• Pooling layers
• CNN architectures
o LeNet
o AlexNet
o VGG
o ResNet
o Inception
• Transfer learning
• Image classification
• Object detection (YOLO, R-CNN basics)
• Image segmentation
Natural Language Processing (NLP)
• Text preprocessing
• Tokenization
• Word embeddings
o Word2Vec
o GloVe
o FastText
• TF-IDF
• Sentiment analysis
• Text classification
• Named Entity Recognition (NER)
• Part-of-Speech tagging
• Topic modeling (LDA)
• Transformers
o BERT
o GPT
o T5
• Hugging Face library
Advanced Deep Learning
• Generative Adversarial Networks (GANs)
• Autoencoders (VAE)
• Reinforcement Learning basics
• Graph Neural Networks (basics)
Time Series Analysis: (4 Hrs.)
Time Series Fundamentals
• Components (trend, seasonality, cyclic, irregular)
• Stationarity
• Autocorrelation (ACF)
• Partial autocorrelation (PACF)
Time Series Models
• Moving averages
• Exponential smoothing
• ARIMA models
• SARIMA (seasonal ARIMA)
• Prophet (Facebook)
• LSTM for time series
• Forecasting techniques
• Anomaly detection in time series
Model Deployment: (4 Hrs.)
• Streamlit
Specialized Topics: (4 Hrs.)
Computer Vision
• Image processing (OpenCV)
• Feature extraction
• Object detection
• Face recognition
• Image segmentation
• Video analysis
Business & Communication Skills: (10 Hrs.)
Data Storytelling
• Communicating insights
• Presentation skills
• Visualization best practices
• Executive dashboards
• Report writing
Domain Knowledge
• Business metrics and KPIs
• Industry-specific applications
• Problem framing
• Stakeholder management
Development Tools
• Jupyter Notebooks
• Google Colab
• VS Code
• PyCharm
• Git and GitHub
• Command line basics
Visualization Tools
• Excel
• Power BI
Duration: 150 Hours
Villa No. 48, 2nd Floor, Flat 6, 105th Street, El Horreya Sq., Beside El Raya Market, Maadi - Cairo, Egypt 11728
Mobile+20 1112 50 5953
Whatsapp+20 101 774 3315
Email info@itsharks.co